Supersingular Isogeny and Ring Learning With Errors-Based Diffie-Hellman Cryptosystems: A Performance and Security Comparison

Claudio Téllez
Diogo Pereira
Fábio Borges

Laboratório Nacional de Computação Científica - LNCC

10 de dezembro de 2018
Introduction

Both supersingular isogeny and ring learning with errors-based cryptosystems are promising candidates for a post-quantum era.

The expected disruptive capacity of quantum computing raises the need to foster the technical development of feasible post-quantum cryptosystems that take into account security standards and performance requirements.
Introduction

For this reason, our purpose is to analyze the trade-off between performance of security of two post-quantum key exchange protocols.

Our discussion addresses the feasibility of supersingular isogeny Diffie-Hellman (SIDH), based on isogenies between supersingular elliptic curves, and of lattice-based ring learning with errors key exchange (RLWE).
Introduction

- Introduction
- Theoretical foundations
- Performance and security analysis
- Conclusions
Theory Foundations - SIDH

- Diffie-Hellman based on isogenies between supersingular elliptic curves (SIDH): Jao and De Feo, 2011.
Theoretical Foundations - SIDH

- ECC is vulnerable to quantum attacks.

 Shor’s algorithm could break a 128-bit security level (256-bit module) curve using 2330 qubits and 1.26×10^{11} Toffoli gates.

- Isogeny-based cryptography with ordinary elliptic curves are unfeasible for a post-quantum era.

 Childs et al (2010) showed how to construct elliptic curve isogenies in quantum subexponential time.
An isogeny $\varphi : E_1 \rightarrow E_2$ between elliptic curves E_1 and E_2 is a rational morphism that preserves both the geometry of elliptic curves and their group structures.

Isogeny-based cryptosystems are based on *isogeny graphs* whose vertices are equivalence classes of elliptic curves (defined by the j-invariant) and whose edges are isogenies between them.

Rostovtsev and Stolbunov’s original formulation: isogeny graphs encompassing prime numbers of elliptic curves connected by isogenies are called *isogeny stars*. They used *routes* on wide enough isogeny stars for constructing cryptographic algorithms.
Theoretical Foundations - SIDH

Given a isogeny star of order \(n \), the required complexity of attacks is estimated at \(O(n) \) isogeny computations. The *meet-in-the-middle* technique provides an estimation of \(O(\sqrt{n}) \) computations. For elliptic curves over the field \(\mathbb{F}_p \), Galbraith (1999) provided an estimation of \(O(p^{1/4}) \) computations.

Besides, as the \(j \)-invariant changes at every step, \(q \) equations must be solved consecutively in order to compute a chain of \(q \) isogenies. Hence, computations cannot be parallelized.

However, Childs et al (2010) found a subexponential algorithm to construct elliptic curve isogenies. Hence, cryptosystems based on isogenies between ordinary elliptic curves could be vulnerable to quantum attacks in subexponential time.
An elliptic curve over a field k of characteristic $p > 0$ is *supersingular* iff its endomorphism ring over \overline{k} has rank 4 (an order in a quaternion algebra).

Jao and De Feo’s (2011) proposal for a Diffie-Hellman based on isogenies between supersingular elliptic curves (SIDH) relies on the non-abelian structure of the set of isogenies of a supersingular elliptic curve. SIDH uses supersingular isogeny classes and replaces exponentiations by quotients.
Theoretical Foundations - RLWE

- Learning With Errors problem (LWE) (Regev, 2009).
- Ring LWE (RLWE) (Lyubashevsky et al., 2013).
The basic algebraic structure of RLWE is a ring. For example:

$$R = \mathbb{Z}_q[x]/\Phi(x)$$

(polynomials modulo a cyclotomic polynomial $\Phi(x)$ with coefficients in the field \mathbb{F}_q)
The LWE problem in a ring R is defined by fixing an error distribution χ over R concentrated on small elements (i.e., relative to a small bound B). The objective is to recover a secret $s(x) \in R$ by means of a sequence of approximations

$$(a_i(x), b_i(x))$$

where $a_i(x)$ are random known polynomials, $e_i(x)$ are random unknown polynomials (relative to the bound B), and

$$b_i(x) = a_i(x)s_i(x) + e_i(x)$$

If $\Phi(x)$ in $R = \mathbb{Z}_q/\Phi(x)$ is cyclotomic, the difficulty of solving the RLWE is equivalent to the difficulty of solving the SVP$_\delta$ lattice problem (the Approximate Shortest Vector Problem).
The common parameters of the cryptosystem are:

- \(n \), the degree of \(\Phi(x) \)
- \(a(x) \in R \), a fixed polynomial of the ring
- \(q \), a prime number
- \(\chi \), a probability distribution

The secret polynomials are \(s(x) \in R \) and \(e(x) \in R \) (with coefficients small in the integers, relative to a bound \(B \)). The coefficients of \(s(x) \) and \(e(x) \) are chosen according to \(\chi \). The public key is \(b(x) = a(x)s(x) + e(x) \).
Table 1 shows a comparison between several Diffie-Hellman protocols:

<table>
<thead>
<tr>
<th></th>
<th>DH</th>
<th>ECDH</th>
<th>SIDH</th>
<th>RLWEDH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements</td>
<td>Ints. g</td>
<td>Points P in E</td>
<td>Curves E in isogeny classes</td>
<td>Polynomials $a(x) \in R$</td>
</tr>
<tr>
<td>Secrets</td>
<td>exp. x</td>
<td>scalars k</td>
<td>isog. ϕ</td>
<td>small errors $s, e \in R$</td>
</tr>
<tr>
<td>Comp.</td>
<td>$g, x \mapsto g^x$</td>
<td>$k, P \mapsto [k]P$</td>
<td>$\phi, E \mapsto \phi(E)$</td>
<td>$a, s, e \mapsto a \cdot s + e$</td>
</tr>
<tr>
<td>Hard Problem</td>
<td>Given g, g^x, find x</td>
<td>Given $P, [k]P$, find k</td>
<td>Given $E, \phi(E)$, find ϕ</td>
<td>given a and $a \cdot s + e$, find s</td>
</tr>
</tbody>
</table>

Table 1: Comparison between the algorithms.
The security of the SIDH protocol depends on the problem of computing an isogeny between isogenous supersingular curves. The known complexities for solving this problem are:

- $O(p^{1/4})$ against classical attacks
- $O(p^{1/6})$ against quantum attacks

The pertinent classical and quantum complexities to solve the SVP_δ (provable) in any lattice are:

- $2^{0.804n+o_\delta(n)}$ in the classical case
- $2^{0.603n+o_\delta(n)}$ in the quantum case (ListSieve-Birthday algorithm)
For the IFP (Integer Factorization Problem), we use the general number field sieve (GNFS) and compare a brute force attack with the GNFS. Matching the complexity, we have

$$2^x = \exp \left(\left(\left(\frac{64}{9} \right)^{1/3} + O(1) \right) (\ln n)^{1/3} (\ln \ln n)^{2/3} \right)$$

where n is the number for factorization.

To solve the DLP (Discrete Logarithm Problem), we use Pollard‘s Rho algorithm. Matching the complexities, we have

$$2^x = \sqrt{\frac{\pi \sigma}{2}}$$

where σ is the order of the group.
Performance and Security Analysis

Matching complexities, we have:

\[
2^x = p^{1/4} \quad \text{CI}
\]
\[
2^x = p^{1/6} \quad \text{QI}
\]
\[
2^x = 2^{0.804n} \quad \text{C-RLWE}
\]
\[
2^x = 2^{0.603n} \quad \text{Q-RLWE}
\]

Where CI corresponds to the best known algorithm to solve the isogeny problem (classical case), QI corresponds to the best known algorithm to solve the isogeny problem (quantum case), C-RLWE corresponds to the best known algorithm to solve the SVP_{\delta} (classical case), and Q-RLWE corresponds to the best known algorithm to solve the SVP_{\delta} (quantum case).
Performance and Security Analysis

Table 2 summarizes the results found. We added a column with the NIST recommended values.

<table>
<thead>
<tr>
<th>Brute Force</th>
<th>DLP</th>
<th>GNFS</th>
<th>NIST</th>
<th>CI</th>
<th>QI</th>
<th>C-RLWE</th>
<th>Q-RLWE</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>160</td>
<td>851</td>
<td>1024</td>
<td>320</td>
<td>480</td>
<td>100</td>
<td>133</td>
</tr>
<tr>
<td>112</td>
<td>224</td>
<td>1853</td>
<td>2048</td>
<td>448</td>
<td>672</td>
<td>140</td>
<td>186</td>
</tr>
<tr>
<td>128</td>
<td>256</td>
<td>2538</td>
<td>3072</td>
<td>512</td>
<td>768</td>
<td>160</td>
<td>213</td>
</tr>
<tr>
<td>192</td>
<td>384</td>
<td>6707</td>
<td>7680</td>
<td>768</td>
<td>1152</td>
<td>239</td>
<td>319</td>
</tr>
<tr>
<td>256</td>
<td>512</td>
<td>13547</td>
<td>15360</td>
<td>1024</td>
<td>1536</td>
<td>319</td>
<td>425</td>
</tr>
</tbody>
</table>

As Grover’s algorithm can find a n-bits key with complexity $O(\sqrt{n})$, any algorithm should at least double the key length to keep the same level of security against a quantum attacker. The next figure shows the trade-off between security and key bit length, with the interpolation polynomials from the data in Table 2.
y gives the key bit length.

$y = 506.526 \exp(0.0128886x)$

x gives the level of security by brute force.

$y = 6x$

$y = 4x$

$y = 2x$

$y = 1.66x + 0.35$

$y = 1.24x + 0.69$
Performance and Security Analysis

As for costs, in the case of SIDH, the main point is to compute isogenies. Both known algorithms to perform this task (multiplication-oriented or isogeny-oriented) have a cost of $O(\log^2 p)$ (where the major cost corresponds to the isogeny evaluation).

For the RLWE key exchange, the more pertinent cost relates to the random sampling of error polynomials. To use $a(x)$ as a global constant allows further optimization. In the simplified key exchange described in the paper, the procedure required a total of 8 polynomial multiplications, 1 application of the Sig function and 2 computations of key streams.
Conclusions

- SSI achieves small key sizes with good performance at the practical security levels recommended by NIST.
- When the security level increases, the cost for SIDH increases exponentially slower than for classical cryptographic algorithms.
- The same result applies to RLWE - that outperforms SSI regarding both key sizes and performance.
- Hence, we conclude that both analyzed cryptosystems are good candidates against quantum attacks in the near future.
Thank you